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Abstract

The underlying basis of genetic variation in quantitative traits, in terms of the number

of causal variants and the size of their effects, is largely unknown in natural popula-

tions. The expectation is that complex quantitative trait variation is attributable to

many, possibly interacting, causal variants, whose effects may depend upon the sex,

age and the environment in which they are expressed. A recently developed methodol-

ogy in animal breeding derives a value of relatedness among individuals from high-

density genomic marker data, to estimate additive genetic variance within livestock

populations. Here, we adapt and test the effectiveness of these methods to partition

genetic variation for complex traits across genomic regions within ecological study

populations where individuals have varying degrees of relatedness. We then apply this

approach for the first time to a natural population and demonstrate that genetic varia-

tion in wing length in the great tit (Parus major) reflects contributions from multiple

genomic regions. We show that a polygenic additive mode of gene action best

describes the patterns observed, and we find no evidence of dosage compensation for

the sex chromosome. Our results suggest that most of the genomic regions that influ-

ence wing length have the same effects in both sexes. We found a limited amount of

genetic variance in males that is attributed to regions that have no effects in females,

which could facilitate the sexual dimorphism observed for this trait. Although this

exploratory work focuses on one complex trait, the methodology is generally applica-

ble to any trait for any laboratory or wild population, paving the way for investigating

sex-, age- and environment-specific genetic effects and thus the underlying genetic

architecture of phenotype in biological study systems.
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Long-term, individual-based studies of wild populations

experiencing naturally occurring environmental condi-

tions are fundamental to our understanding of evolution

(Both et al. 2006; Charmantier et al. 2008; Robinson et al.

2008; Ozgul et al. 2009). However, studying the diversity

of morphology, behaviour and physiology within and

among natural populations is limited by a lack of

knowledge of the underlying genetic architecture of con-

tinuously varying quantitative traits (Mackay et al. 2009;

Hill 2012). Genetic variation in these complex traits may

be attributable to many, possibly interacting, genes

whose expression may be context dependent (Falconer
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& Mackay 1996; Mackay 2001; Hill et al. 2008). Dissec-

tion of this genetic variation into underlying causative

factors is thus likely to be difficult, requiring an

approach that is able to accurately describe the overall

genetic architecture of complex quantitative traits in

populations that contain close relatives.

The primary goal of most genetic mapping experi-

ments is to identify the locations of genes that affect

among-individual trait variation and to estimate the

genetic effects of these quantitative trait loci (QTL).

QTL mapping by linkage analysis has been used to

great effect to address these goals (Johnson et al. 2010;

Slate et al. 2010), but there are two main limitations of

this approach. First, it does not always accurately esti-

mate the variance attributed to QTL, and second, it

does not accurately detect the number of QTL. True

undetected QTL have effects that contribute to the esti-

mates of the regions that are detected as having QTL

and sampling thus occurs from an upwardly biased set

of estimated effects (Beavis 1994; G€oring et al. 2001).

Significant associations are reported only when test sta-

tistics exceed a predetermined critical threshold, which

results in declared QTL regions having effects that

appear much larger than they really are, particularly in

studies with small sample size (Slate 2013). Therefore,

QTL mapping by linkage analysis is useful for locating

genomic regions of large effect, but this approach is

unable to accurately describe the overall genetic archi-

tecture of complex quantitative traits in terms of the

number and effect size of underlying causal variants.

Genome-wide association studies (GWAS) have led to

the discovery of hundreds of marker loci that are asso-

ciated with complex traits, including disease and quan-

titative phenotypes in human, livestock and crop

populations (Buckler et al. 2009; Goddard & Hayes

2009; International Schizophrenia Consortium 2009;

Allen et al. 2010). For most traits, however, the associ-

ated variants cumulatively explain only a small fraction

of total heritability, as loci whose effect sizes are too

small to reach genome-wide statistical significance will

not be detected. This results in a ‘missing heritability’

(Manolio et al. 2009), meaning that GWAS is also unable

to accurately describe the overall genetic architecture of

complex quantitative traits in terms of the number and

effect size of underlying causal variants.

To overcome the limitations of these two approaches,

a recently developed multimarker method has been used

to partition additive genetic variance across the genome.

The actual genome-wide relatedness between pairs of

individuals, defined as the proportion of the genome

that two relatives share identity by descent (IBD), varies

around its expectation because of Mendelian segrega-

tion, with the exception of monozygotic twins and par-

ent–offspring pairs (Visscher 2009; Hill & Weir 2011).

Dense single nucleotide polymorphism (SNP) genotyp-

ing has now made it possible to estimate the actual gen-

ome-wide relatedness among individuals using genetic

markers (Visscher 2009). Estimating identity by state

from high-density SNP markers was first developed in

animal breeding to accurately predict breeding values in

livestock populations that contain close relatives (‘geno-

mic prediction’). This revolutionized the field, enabling

increased accuracy of breeding value prediction, and

allowed candidate individuals to be selected without

requiring the measurement of their phenotype (Van Ra-

den et al. 2009; Hayes et al. 2010; Dekkers 2012).

These multimarker methods have recently been

applied to estimate additive genetic variation in human

height and other quantitative phenotypes in unrelated

human study populations (Yang et al. 2010, 2011) and

among sib pairs (Visscher et al. 2006, 2007). Human

medical genetic studies typically use ‘unrelated’ individ-

uals, and thus, the approach is conceptually different

than in animal breeding. Applied in this setting, multi-

marker methods capture the contribution from all causal

variants that are in linkage disequilibrium (LD) with

genotyped markers, in the same way as for single mark-

ers in GWAS, meaning that the total heritability

explained by the additive effects of all causal variants in

linkage with the SNP markers is estimated. These devel-

opments have lead to revolutionary insights into the

underlying genetic architecture of human disease and

other complex phenotypes (e.g. Yang et al. 2010, 2011).

For ecological study populations, multimarker

approaches could provide accurate estimates of heritabil-

ity and allow genetic variance to be accurately parti-

tioned across the genome. Importantly, this approach

can also be adopted irrespective of whether a pedigree is

available or not, enabling additive genetic variance to be

calculated without a pedigree or breeding design. This

would enable a description of the overall genetic archi-

tecture of complex quantitative traits in terms of the

number and effect size of underlying causal variants for

any population. Previous studies provide evidence that

sharing of haplotype blocks within families can be esti-

mated with a high degree of accuracy with sparsely dis-

tributed genome-wide markers (Habier et al. 2009), and

that genetic variance could be estimated based on few

full-sib families (Øderg�ard & Meuwissen 2012). How-

ever, in more complex pedigrees and study designs typi-

cal of ecological data sets, where more distant relatives

are common, tracing haplotype blocks over multiple gen-

erations may be more challenging. This is because DNA

blocks will be shortened due to more recombination, and

actual genomic relationships are expected to deviate

more from their expected values in more distantly

related individuals (Hill & Weir 2011). While the accu-

racy of ‘genomic prediction’ in large half-sib livestock
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populations has been tested, where marker density and

sample sizes are far greater than ecological study popula-

tions, there has been no testing of the bias and the accu-

racy of these approaches in recovering estimated effects

across different regions of the genome. Therefore, before

these approaches can be applied for the first time in

molecular ecology, the accuracy and bias of multimarker

methods to estimate additive genetic variance and parti-

tion this variance across the genome requires testing.

Here, we adapt these multimarker methods, developed

in animal breeding, to partition additive genetic variance

across chromosomal regions within a wild population for

the first time, and to test for sex-specific genetic effects

across the genome. We also conduct the first simulation

study to test for bias and the accuracy of these approaches

in recovering estimated effects, using data that are similar

to that available from studies of naturally occurring pop-

ulations. Having established that the approach is appro-

priate for ecological data, we then analyse the complex

quantitative trait of wing length, measured within a com-

prehensively studied wild population of great tits, Parus

major, breeding at Wytham Woods, near Oxford, UK

(McCleery et al. 2004; Charmantier et al. 2008). We use

wing length as a model trait because it allowed us to dem-

onstrate multimarker methods in full, due to the fact that

wing length is highly heritable, and because it is the trait

for which a large number of phenotypic measures were

available for a large number of genotyped individuals

(2098 individuals and 4575 measures).

Wing length variation is partly caused by differences

among individuals in the length of primary feathers in

the wing, partly by differences among individuals in fore-

limb length, and also reflects differences in body size, sex,

age and general condition (Jensen et al. 2003; Gienapp &

Meril€a 2010). This trait is therefore a classic example of a

complex quantitative trait, which is highly heritable and

shows sexual dimorphism across many populations.

Wing length is associated with migratory behaviour and

thus shows striking adaptive diversity within and among

avian species (Lockwood et al. 1998; Dawideit et al. 2009;

Rolshausen et al. 2009), with abundant within-population

genetic variation that has been shown to respond rapidly

to environmental changes (Rolshausen et al. 2009). In gen-

eral, the analyses of within-species genetic variation will

yield a deeper understanding of microevolution of mor-

phological traits in natural populations (Jensen et al. 2003;

Gienapp & Meril€a 2010; Tarka et al. 2010). Therefore, in

addition to revealing the underlying genetic architecture

of this trait within this population, our aim is to adapt

multimarker approaches to pave the way for investigat-

ing sex-, age- and environment-specific genetic effects

across the genome, which we believe will provide great

insight into the underlying genetic architecture of pheno-

type for any ecological study population.

Materials and methods

Observational data used in this study

The population. Great tits have been studied at Wytham

Woods, near Oxford, United Kingdom, since the 1940s,

with nest boxes first erected in 1947. As described else-

where (McCleery et al. 2004; Charmantier et al. 2008), a

wide range of morphological and life history phenotypes

have been recorded for individuals since the early 1960s.

Blood samples have been collected for most birds since

2005, and from nestlings for a smaller subset of individu-

als between 1985 until 2005, allowing DNA to be

extracted from nucleated blood cells (Santure et al. 2011).

Phenotypic data. There were 4293 measures on 1949

genotyped individuals born between 1985 and 2009 for

which the sex and age were known. Age was classified

as 0 for individuals measured during the year of their

birth (305 measures); 1 for those caught in the year after

their birth (2293 measures); and 2 for those of any other

age (1695 measures).

Genomic data. A panel of almost 10 000 SNPs have previ-

ously been selected for inclusion on an Illumina iSelect

BeadChip, ‘SNP chip’ (van Bers et al. 2012). A total of

2644 individuals were successfully genotyped, with 7203

of the 9193 SNPs included on the SNP chip displaying

population-level variation (van Bers et al. 2012).

Pedigree and identity checking. A social pedigree was

available based on field observations, and this was

corrected using the genotype information by (i) check-

ing the consistency between field-recorded and genetic

sex based on the observed heterozygosity of Z-linked

markers, (ii) identifying and removing parent–offspring

pairs raising large numbers of Mendelian inheritance

errors at autosomal markers and (iii) using categorical

paternity analysis to assign a number of genetic fathers

to individuals resulting from extra-pair paternities (van

Bers et al. 2012). A total of 2497 individuals of con-

firmed identity were included in further analyses.

Construction of a genetic linkage map. A great tit genetic

linkage map was constructed for 32 chromosomes (1–15,

17–24, 26–28, 1A, 4A, 25A, 25B, Z and an additional link-

age group LGE22) containing 4878 markers. An addi-

tional 714 markers whose chromosomal location could

be inferred by comparative mapping with the assembled

zebra finch genome were added to the map, giving a set

of 5312 ‘chromosome-assigned’ markers (van Bers et al.

2012). Given the small number of markers on some chro-

mosomes, a total of 23 chromosomes or chromosome sets

were constructed: chromosomes 1–15, 17–20, 1A, 4A, a
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pooled set of markers from microchromosomes 21–28

plus the linkage group LGE422, and the Z chromosome.

These chromosomes contained a predicted total of

15 448 genes based on homology with the zebra finch

genome (van Bers et al. 2012).

Simulated data used in this study

Data were simulated with the exact same marker struc-

ture and number of individuals as for the Wytham great

tit data. Three different trait architectures were simu-

lated: (i) a polygenic architecture where a heritability of

0.4 is explained by 200 QTL spaced every 10 centimorgan

(cM) throughout the genome; (ii) an architecture where a

heritability of 0.4 is explained 22 QTL, with each QTL on

a different linkage group; and (iii) an architecture where

a heritability of 0.4 is explained by five QTL on separate

linkage groups, with the remaining linkage groups con-

taining no QTL. For each type of architecture, we analy-

sed 10 replicate data sets. QTL did not have a uniform

effect size, either between replicates or between chromo-

somes within a replicate (see below for an explanation

and justification for this).

To create the simulated data, we used the software

QMSim (Sargolzaei & Schenkel 2009), which simulates

populations based on a forward in time process

(Sargolzaei & Schenkel 2009). The QMSim software has

been used previously to simulate genetic architectures

and test multimarker methods for genomic prediction

(e.g. Brito et al. 2011).

In the first simulation step, 100 generations with a

constant population size of 500 were simulated. The

number of individuals of each sex was equal, and the

mating system was based on the random mating of

gametes, sampled from both the male and female gam-

ete pools. Therefore, only two evolutionary forces were

considered: mutation and drift. We assumed a recurrent

mutation model where mutation alters the allelic state

with equal transition probabilities from one allele to

another. The mutation rates for both markers and QTL

were specified at a rate of 2.5 e�5 per gene per genera-

tion, with the number of mutations sampled from a

Poisson distribution, and the assumption that mutation

rates are equal for all loci within markers and QTL.

Recombination across these generations was sampled

from a Poisson distribution with a mean derived from

the length of the chromosomes and the location of cross-

over assigned at random across the chromosomes. We

simulated the same number and length of chromosomes,

similar LD structure and similar number and spacing

per chromosome of SNP markers as in the Wytham

great tit data described above.

In the second step, recent generations are then simu-

lated by randomly selecting 200 males and 200 females,

representing those first sampled at the start of the study

(founding individuals). From these individuals, we sim-

ulated five overlapping generations, giving a total of

1800 individuals. Mating was random where an average

of two offspring are produced from each dam, with

gametes randomly selected from the male and female

gametic pools. Fifty percent of the sires and dams were

replaced in all generations, and the selection design

was random with respect to the simulated phenotype,

but the probability of culling was based on age (so that

the oldest 50% were replaced). Phenotype and genotype

data were outputted for all individuals in the recent

population, along with the pedigree. LD was calculated

in the final generation as the pooled square correlation

between adjacent loci (Hill & Robertson 1968).

This entire simulation process was repeated 30 times,

to give 10 independently generated replicate populations

for each of three simulated trait architectures. All traits

had a simulated heritability of 0.4 and a total phenotypic

variance of 1. We simulated the following architectures:

1 for the first architecture, we simulated a scenario

where a heritability of 0.4 is divided across 200 QTL

that were evenly spaced every 10 cM across the gen-

ome. The individual QTL effects sampled from a

gamma distribution with shape parameter 0.1 and the

heritability of all the QTL summed to 0.4. This gave a

trait with many QTL, each of small average effect

(average effect size of each QTL: h2 = 0.002), spread

evenly across the genome so that the effect size of a

linkage group should on average equal its length

(hereafter termed ‘polygenic’).

2 for the second architecture, we simulated a scenario

where a heritability of 0.4 is divided across 22 QTL,

with each QTL on a different linkage group. The QTL

effects were sampled from a gamma distribution with

shape parameter 0.5. This gives a trait with some

moderately large QTL effects, where on average

across replicates all chromosomes should contribute

towards the additive genetic variance (average effect

size of each QTL: h2 = 0.018), but not in proportion to

their length (trait with moderate effect QTL).

3 for the third architecture, we simulated a scenario

where a heritability of 0.4 is divided across 5 QTL

located on linkage groups 1, 5, 6, 9 and 12 in the same

position across all replicate populations. QTL effects

were sampled from a gamma distribution with shape

parameter 1. This gave a trait with 5 large effect QTL

(average effect size of each QTL: h2 = 0.08), where

some chromosomes contribute towards the heritability

and others will not (trait with large effect QTL).

Although there are the same numbers of QTL across

replicates, and all QTL are in the same locations across
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replicates, the effect size of an individual QTL and thus

a particular chromosome will vary across replicates.

This is because QTL effects were sampled from a

gamma distribution within each replicate and were not

fixed, as we felt this was more likely to be realistic

given theory predicts that effect sizes in natural popula-

tions will follow a distribution (Otto & Jones 2000), and

we wanted to assess the ability of our approach to

detect a range of effect sizes.

Applying multimarker methods to ecological study
populations

The concept of IBD is used to indicate two homologous

alleles that have descended from a common ancestor,

with the probability of IBD defined with respect to a

base population (Lynch & Walsh 1998). Estimating IBD

coefficients has been used for some linkage mapping

studies (typical termed variance component QTL map-

ping studies) in many populations where relatedness is

known, where individuals with no known ancestors

form a natural base population of ‘unrelated’ founding

individuals (Lynch & Walsh 1998). However, if the aim

is to gain an unbiased estimate of the genome-wide relat-

edness between all individuals, then estimating IBD may

not be the most appropriate approach. All individuals

are related if traced back further enough; and conse-

quently, estimating IBD loses much of the information

contained in the data. A recent review has argued that

IBD probabilities are mostly used to predict the probabil-

ity that individuals carry alleles that are identical by

state (IBS) at unobserved loci and demonstrated that

relatedness calculated by IBS more accurately represents

true relatedness than IBD coefficients (Powell et al. 2010).

Therefore, in this study, we present an association-based

variance partitioning approach that uses ‘multimarker’

techniques, rather than using single markers and esti-

mating their effects individually as in GWAS studies.

In the next section, we provide an overview of using

multimarker methods to estimate heritability and to

partition additive genetic variation across the genome.

A workflow is provided in Box 1, which provides an

overview of each step. Each step is then explained in

detail below. All statistical testing was conducted in

ASReml (Gilmour et al. 2006), and all matrix algebra

was conducted in R version 2.15 (R Foundation for

Statistical Computing 2013).

Estimating relatedness from SNP markers

Marker-derived IBS relatedness estimates can be obtained

using numerous methods, and below we used three of the

main methods that have been presented to date following

Van Raden (2007). Let M be a matrix of autosomal marker

allele scores, with rows corresponding to the number of

individuals (n) and columns corresponding to the number

of loci (m). Elements of M are �1, 0 or 1 depending upon

whether the individual is a homozygote, heterozygote or

the other homozygote, respectively, for each marker. The

diagonals of an n 9 n matrix of MM′ counts the number

of homozygous loci for each individual, and off-diagonals

measure the number of alleles shared by relatives. If the

frequency of the second allele at locus i is pi and P

contains these allele frequencies expressed as a difference

from 0.5 and multiplied by 2, then column i of P is

2(pi � 0.5). If we subtract P fromM to get Z, then the mean

values of the allele effects are set to 0.

The first approach weights markers by reciprocals of

their expected variance using the formula G1 = ZDZ′,

where D is diagonal with Dii, =1/m[2pi (1�pi)]. This

scales G1 to be analogous to the relationship matrix A,

and we used the observed allele frequencies of the

SNPs in the current population to do this. This

approach is identical to that proposed and utilized in

human medical genetic studies (Yang et al. 2010, 2011)

and in the ‘genomic selection’ methods used to predict

breeding values in livestock (Hayes et al. 2010). A sec-

ond approach does not require allele frequencies but

regresses MM′ onto a kinship matrix calculated from

the pedigree, A, to obtain G2 using the model

MM′ = g011′ + g1A + E. The regression is fit with

MM′ as the dependent and A as independent, with

G2 = MM′ – g0(11′)/g1. Finally, a third approach was

used, analogous to the first, where a normalized matrix

is obtained using G3 = ZZ′/[trace(ZZ′)/m]. This scales

G3 by its actual variance rather than the expected

variance.

Estimating relatedness at the sex chromosomes

For the sex chromosomes, we adopt the first approach of

weighting marker relatedness by reciprocals of their

expected variance (Yang et al. 2010, 2011). Because the

heterogametic sex only has one copy of the sex chromo-

some, SNP alleles on the sex chromosomes are scored as

0 or 1 for the heterogametic sex and 0, 1 or 2 for the homo-

gametic sex referring to the number of copies of a given

SNP allele. Relatedness estimators are then modified to:

Ghet = (M�P)D(M�P)′ for the heterogametic pair, where

D is diagonal with Dii, =1/m[pi (1�pi)] and P is (pi � 0.5).

Ghom = (M�P)D(M�P)′ for the homogametic pair,

where D is diagonal with Dii, =1/m[2pi (1�pi)] and P is

2(pi � 0.5).

Ghet,hom = (M�P)D(M�P)′ for a heterogametic and

homogametic pair, where D is diagonal with Dii,

=1/m[√2pi (1�pi)] and P is 2(pi � 0.5) for the homoga-

metic individual and (pi � 0.5) for the heterogametic

individual.
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Box 1: Applying multi-marker methods to ecological study populations

Step 1—Estimating relatedness from markers

Markers
Individuals 0 1 -1 0 1

1 -1 0 1 1
-1 0 1 -1 0
0 1 1 -1 -1

M is a matrix of SNP
marker scores where 0
is a heterozygote, 1 is a
homozygote, and -1 is
the other homozygote

P is a matrix of the
allele frequencies
p of each SNP i
e x p r e s s e d a s
2(pi-0.5)

Subtrac ng P from
M gives Z, a matrix
of allele effects that
are set to 0 mean
value

Three different approaches can then be used to provide a matrix of relatedness G containing point estimates of the

pair-wise relatedness among individuals from the matrix Z (see Materials and Methods).

Step 2—Weighting marker-derived relatedness estimates

Point estimates of marker-derived relatedness may not accurately reflect actual relatedness. This is because markers

may not be in LD with all of the unobserved loci that we take them to represent. Thus, there may be sampling

error in estimating coefficients of relatedness.

The figure shows marker-derived relatedness matrix G plotted against an identity-by-descent kinship coefficient as

estimated from the pedigree A. Black shows the un-weighted estimates of G and grey gives the weighted estimates

of G. Weighting G towards A, reduces the sampling error around the expected values.

If the population has a pedigree—G can be weighted to the expected relationships estimated from the pedigree relat-

edness matrix A, using a proxy measure of LD.

If there is no pedigree—G can be weighted directly using a proxy measure of LD if the population contains’unre-

lated’ individuals.

Step 3—Estimating heritability from marker-based estimates of relatedness

Weighted estimates of marker based relatedness can then be used to estimate additive genetic variance within an

‘animal model’

y = Xβ + Zv + e where Z is a design matrix rela ng individuals to addi ve gene c effects a with
V(v) = Gσa2where G is the rela onship matrix and σa2 is the polygenic variance.

Step 4—Partitioning genetic effects across the genome using marker-based relatedness

Additive genetic variance can then be partitioned across different regions of the genome. To do this multiple G

matrices from different regions of the genome are included within one model:

y = Xβ + Zxvx + Zjvj + e where Zx and Zy are design matrices rela ng individuals to addi ve gene c
effects a at two different regions of the genome x and j

If we assume no dosage compensation, where each

allele has a similar effect on the trait irrespective of the

sex, then the genetic variance on the sex chromosome for

the homogametic sex is twice that of the heterogametic

sex. For this scenario, we can redefine the relationship

matrix for the sex chromosome as G = 1/2Ghet for heter-

ogametic pairs, G = Ghom for homogametic pairs and

G = 1/√2Ghet,hom for heterogametic–homogametic pairs.
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If we assume full dosage compensation, where each allele

in the homogametic sex has only half the effect of an

allele in the heterogametic sex, we can redefine the rela-

tionship matrix for the sex chromosome as G = 2Ghet for

heterogametic pairs, G = Ghom for homogametic pairs

and G = √2Ghet,hom for heterogametic–homogametic

pairs. Finally, we can assume equal variance on the sex

chromosome for either sex and not adjust the sex chro-

mosome relatedness in any way.

Weighting marker-derived relatedness estimates

In practice, we know little about the actual pairwise

relatedness between individuals; rather we use marker-

derived estimates to approximate this relatedness. There

may be sampling error in estimating coefficients of

relatedness, as point estimates of marker-derived relat-

edness may not accurately reflect actual relatedness,

because markers may not be in LD with all of the unob-

served loci that we take them to represent.

However, we can weight the marker-based related-

ness estimates using a proxy measure of LD, which

reduces the sampling variance around the estimates.

Weighting the marker-derived relationship matrix can

be performed for the whole genome, for individual

chromosomes or for individual genomic segments. The

way in which this is done will depend upon whether

there are close relatives within the data or not.

If the data contain close relatives. If a pedigree is avail-

able, then we can follow a recently advocated approach

in animal breeding (Goddard et al. 2011) and weight

the marker-derived relatedness values to their expected

pedigree-based values using a proxy measure of the LD

between the markers and the underlying unobserved

loci. This removes sampling error in our estimates of G

that occur due to a finite number of markers. In brief,

we (i) create two M matrices by randomly selecting

SNPs to give 0.5 m SNPs per group (where m is the

number of SNP loci); (ii) calculate the marker-derived

relatedness matrix G for each set, giving G1 and G2;

(iii) calculate the expected relatedness from the pedi-

gree A and subtract A from G within each set

(G1a = G1�A; G2a = G2�A); (iv) estimate the covari-

ance between the estimates of G1a and G2a; and

(v) assume that G1a represents our marker-derived esti-

mates or relatedness and G2a represents the actual

relatedness, and thus that this covariance represents a

proxy measure of the LD between the markers and the

underlying unobserved loci, which is used as a weight-

ing factor w, to weight G calculated from all markers

towards the expected relationships A using

GA
n ¼ wGn þ ð1�wÞA, where GA

n is a weighted marker-

derived relatedness matrix estimated using either of the

three approaches of estimating marker-derived related-

ness (n) outlined above.

Box 1 plots un-weighted and weighted estimates of G

against the expected pedigree relatedness values A.

This shows the shrinkage of the variance in relatedness

that occurs around the expected pedigree values due to

the weighting process, removing sampling error created

by low LD of SNP markers. It is important to note that

accounting for relatedness before estimating the proxy

measure of LD is required when relatedness is high.

This is because in population of high relatedness both

G1a and G2a will contain close relatives, and thus, A

must be subtracted before estimating the proxy measure

of LD, otherwise an artificially high estimate of LD will

be obtained that will result in a poor estimate of addi-

tive genetic variance. As a result, programs such as

GCTA (Yang et al. 2010, 2011) are unlikely to be appro-

priate for estimating heritability from marker-derived

relatedness in naturally occurring study populations

containing close relatives.

If a pedigree is not available but the relatedness esti-

mates from the markers are greater than 0.125, then one

can exclude closely related individuals and follow the

protocol outlined below for unrelated individuals. If

this is not possible/desired, then steps (1) through (4)

above can be conducted using only the diagonal of G to

calculate the proxy measure of LD w, and then, this can

be used to weight G directly as wGn for the off-diago-

nal and 1 + wGn for the diagonal. This is because esti-

mating the covariance between the estimates of G1a

and G2a in step (4) without first accounting for high

levels of relatedness will give an artificially high mea-

sure of LD because both G1a and G2a will contain close

relatives biasing the regression. Therefore, it is conve-

nient just to use the diagonals to calculate w in this

situation.

If individuals are ‘unrelated’. If all individuals are related

by <0.125, then the weighting methods used by Yang

et al. (2010) that are implemented in GCTA (Yang et al.

2010, 2011) can be used. This is steps 1 through 4 as

outlined above for where pedigree data are available

where the off-diagonal of G is weighted by multiplying

it by w, and the diagonal of G is weighted by 1 + wGn.

Estimating heritability from marker-based estimates of
relatedness

Under the null hypothesis of a polygenic additive

model, all locations in the genome contribute a small

amount to the overall variance. Total additive genetic

variance can therefore be estimated as the sum of the

effects of many markers across the genome in a hierar-

chical mixed effects model framework:
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y ¼ Xbþ Zmþ e ð1Þ
where y is a vector of phenotypic measures for a poly-

genic trait. X is a design matrix relating trait records to

vectors of fixed effects b. e is a vector of random resid-

ual deviates, where r2e is the error variance. Z is a

design matrix relating individuals to additive genetic

effects a. VðmÞ ¼ Ar2a where A is the average relation-

ship matrix and r2a is the polygenic variance. The

matrix of genome-wide relatedness estimates, Ga, calcu-

lated by the methods outlined above using all SNP

markers typed across the entire genome, can be used in

eqn 1 instead of the A matrix estimated from a breed-

ing design or pedigree. For wing length, additional ran-

dom effects of year of measurement to control for

temporal variation, area of the study site to control for

spatial variation, and a permanent environment effect

to account for nonadditive differences among individu-

als were used (Table 1). Fixed effects included age to

control for age-specific patterns and sex to control for

mean sexual dimorphism.

Partitioning genetic effects using marker-based
relatedness

Equation 1 can then be extended to partition additive

genetic variance across different regions of the genome.

To do this, relatedness can be estimated for different

genomic regions separately (e.g. different chromo-

somes), and these multiple relatedness estimates can

all be included as separate parameters within one

model:

y ¼ Xbþ Zxmx þ Zjmj þ e ð2Þ

where in this example Zx and Zj are design matrices

relating individuals to additive genetic effects v where

VxðmxÞ ¼ Gx
ar

2
a and VjðmjÞ ¼ Gj

ar
2
a which estimates

genetic variance attributable to two separate regions of

the genome x and genome j. This model can be

extended to include multiple relationship matrices, thus

partitioning additive genetic variance into effects attrib-

utable to multiple genomic regions. We used this

approach to obtain estimates of the additive genetic

variance and heritability of each genomic region.

We can also conduct statistical testing using likeli-

hood ratio testing by estimating a series of models and

using log-likelihood ratio test statistics to test among

them. Under the null hypothesis of a polygenic model,

it is predicted that the total additive genetic variance is

distributed across the chromosomes in the genome

according to the gene content of each chromosome. To

test the alternative hypothesis that a small number of

genes account for most of the genetic variance (i.e. an

oligogenic model), four model sets can be constructed

and contrasts made for every chromosome.

For a given chromosome, the models are given as

follows:

1 A mixed model with only one G constructed exclud-

ing markers on that chromosome.

2 A mixed model with one G constructed excluding

markers on that chromosome, plus another G con-

structed with only markers on that chromosome.

3 A mixed model with G constructed with all markers.

4 Mixed model with G constructed with all markers,

plus G constructed with only markers on that chro-

mosome.

The contrasts are then:

1 Contrast 1: for each autosome, compare the variance

explained by model (ii) vs. model (i) to test whether

the chromosome explains any variation in the trait.

Across all chromosomes, the expectation is that there

is a positive linear relationship between the number

of genes and the amount of variance explained per

chromosome if the trait is polygenic.

2 contrast 2: for each autosomal chromosome and the Z

chromosome, compare the variance explained from

model (iv) to model (iii) to test whether there is evi-

dence that the variance explained by the chromosome

is greater than the amount expected given the size

(chromosome length/gene content) of the chromo-

some.

The contribution of each chromosome to the overall

phenotypic variance is tested by comparing the log like-

lihood of the genome-wide model (model i or iii) with

the log likelihood of the genome-wide plus chromo-

some model (model ii or iv), with a likelihood ratio test

(LRT).

Using the simulated data to test bias and accuracy of
our approach

Before analysing the Wytham Woods great tit data, we

first assessed the accuracy and bias in the analytical

approach described below in a number of ways:

1 We estimated heritability within our simulated data

using the pedigree and both the un-weighted and

weighted estimates of marker-based relatedness from

the three different methods. We compared the esti-

mates gained and the model fit to the data.

2 We partitioned additive genetic variance across 22

simulated autosomal linkage groups within our simu-

lated data. For each of the three simulated trait

© 2013 John Wiley & Sons Ltd
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architectures, estimates of the heritability of each of

the 22 linkage groups across 10 replicates were made.

We used qqplots to compare estimated and simulated

effect sizes; we tested for a difference between the

simulated values and the point estimates using

generalized linear models with a gamma error distri-

bution and log link; we also used a root-mean-square

test statistic of the observed from the expected and

estimated a P-value using Monte Carlo simulation in

the R package rms.gof.

3 We tested for an association between chromosome

length/gene content and effect size across the three

simulated architectures to describe whether a chro-

mosome contributes more to the heritability than

expected under a polygenic model.

4 We used the chromosomes that contained no QTL in

the large effect QTL architecture simulations to test

whether a chi-square distribution with one degree of

freedom captured all of the potential for estimation

error.

Testing for sex-specific genetic effects across the
genome

Finally, for the Wytham Woods empirical data, we then

extended eqn 2 to test for sex-specific effects at the chro-

mosome level, using log-likelihood ratio testing to exam-

ine whether fitting separate effects for each sex provides

a better fit to the data. To do this, we adopted a statisti-

cal testing approach where we fit a series of models:

y ¼ Xbþ Zx;smx;s þ Zj;smj;s þ e ð3Þ
where Zx,s and Zj,s are design matrices relating individ-

uals to additive genetic effects v for each sex s. x is a

chromosome and j is the rest of the genome, and thus,

eqn 3 fits a marker-derived relatedness matrix for mark-

ers on chromosome x, and a marker-derived relatedness

matrix for markers on the rest of the genome j. Thus,

this partitions genetic variance to a chromosome x and

to the rest of the genome j.

We first fit a model containing an unstructured

covariance matrix for j, which estimates genetic vari-

ance for each sex and the across-sex genetic covariance,

alongside a single variance component for chromosome

x. In this model, fitting a single variance component for

chromosome x assumes equal variance across the sexes

and a cross-sex correlation of unity.

Second, we then extend this model to estimate sepa-

rate variance for each sex at chromosome x with a

covariance across the sexes that is fixed to unity,

alongside the unstructured covariance matrix for j.

This was done using a CORGH variance structure in

ASReml for chromosome x. This structure estimates a

correlation (here fixed to one) and then two variances,

thus testing for sex-limited variance at a particular

chromosome, while simultaneously estimating sex-lim-

ited variance and covariance at the rest of the gen-

ome. We compared the fit of this model to the data

using likelihood ratio test statistics (termed LRT1 Table

3) assuming a chi-square distribution and one degree

of freedom.

If this second model provided a better fit to the data

and then the first model assumes constant variance

across the sexes, then this is evidence for sex-specific

effects at chromosome x. We did not extend our model

comparisons any further because there was no scenario

where a chromosome has an effect that was signifi-

cantly different to zero in both sexes, and thus, we

could not test for differences in additive genetic covari-

ance between the sexes across chromosomes.

Results

Estimating heritability from markers

We first estimated heritability within our simulated

data using (i) the pedigree, (ii) un-weighted marker-

based estimates of relatedness calculated using the three

different approaches described in the methods and

(iii) weighted marker-based estimates of relatedness cal-

culated using the three different approaches. The simu-

lated heritability was 0.4, and we examined the

accuracy of the different approaches using 95% confi-

dence intervals of the estimates across replicates and by

the difference in log likelihood across models. The esti-

mated weighting factor was 0.460.

Using a pedigree to estimate heritability generally

returned the simulated values across the three different

simulated trait architectures (Table 1). Using weighted,

marker-based relatedness to estimate heritability also

provides accurate estimates and also gave a better like-

lihood than the un-weighted or pedigree-based meth-

ods, suggesting that it provides a significantly better fit

to the data (LRT, Table 1). Heritability estimates made

using un-weighted genomic relatedness matrices were

lower than the heritability values estimated by the pedi-

gree (Table 1) and generally provided a poorer model

fit as compared to weighted marker-based relatedness

(Table 1).We found no differences between the three

different methods of calculating marker-based related-

ness in either the estimates returned or the model fit

(Table 1). Therefore, any of the three methods of esti-

mating genomic relatedness provide reliable estimates

and a better fit to the data, provided that the point esti-

mates of relatedness are scaled by an estimate of the

LD between markers and the underlying causal vari-

ants. Furthermore, in our simulations, the average r2

© 2013 John Wiley & Sons Ltd
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among adjacent markers (a measure of LD) was 0.012,

which compares to the Wytham Woods great tit popu-

lation where the value is 0.015. Therefore, we provide

evidence that in populations containing a range of rela-

tives, with relatively low LD among markers and low

marker density, three different methods of estimating

genomic relatedness are able to accurately return the

simulated heritability.

Using markers to partition genetic variance across the
genome

Having established that weighting the genomic relation-

ship matrix provided an accurate estimate of the simu-

lated heritability and a better fit to the data, we used

this approach to partition additive genetic variance

across 22 linkage groups within our simulated data. For

each of the three simulated trait architectures, estimates

of the heritability of each of the 22 linkage groups

across 10 replicates were made (Fig. 1). We compared

the estimated and simulated effect sizes in qqplots and

tested for differences in distribution between estimated

and simulated effects.

We compare estimated and simulated effect sizes using

qqplots and found that the 95% confidence intervals of

all of the estimates overlapped with their expected value

(Fig. 1a). We also present the root square difference of

the estimates from the simulated value (root square error:

Fig. 1b), showing that the difference between the point

estimates and the simulated values are never greater than

a heritability of 8%, and that this difference occurred in

less than one in a hundred models.

Second, we then tested for a difference between the

simulated values and the point estimates using general-

ized linear models with a gamma error distribution and

log link and found no evidence for a difference between

the estimated and the simulated effects for the poly-

genic architecture (mean observed effect: 0.024, 95% CI

0.019: 0.029; mean simulated effect: 0.023, 95% CI: 0.019:

0.027; P = 0.684), for the trait with moderate effect QTL

(mean observed effect: 0.024, 95% CI 0.019: 0.030; mean

simulated effect: 0.019, 95% CI: 0.014: 0.024; P = 0.180)

or for a trait with large QTL effects (mean observed

effect: 0.026, 95% CI 0.017: 0.035; mean simulated effect:

0.019, 95% CI: 0.010: 0.028; P = 0.684). We also used a

root-mean-square test statistic of the observed from the

expected and estimated a P-value using Monte Carlo

simulation and gained a P-value of 1 for each architec-

ture, indicating no difference between the observed and

simulated values (root-mean-square deviation for poly-

genic architecture: 0.0012; for the trait with moderate

effect QTL: 0.0014; for the trait with large effect QTL:

0.0013). Therefore, we have shown that marker-based

estimates of relatedness can be used to partition addi-

tive genetic variation across regions of the genome with

accuracy, and no systematic bias, in populations con-

taining a range of relatives, with relatively low LD

among markers and low marker density.

Third, we also provide evidence that log-LRT statistics

provide an accurate method of assessing a chromosome’s

contribution towards the additive genetic variance. We

used the chromosomes that contained no QTL in the

large effect QTL architecture simulations to test whether

a chi-square distribution with one degree of freedom cap-

tured all of the potential for estimation error (Fig. 1c). We

found that LRT of the effects of chromosomes containing

no QTL was never significant (Fig. 1c), supporting the

use of LRT to assess the significance of a chromosomes

contribution to the overall heritability of a trait.

Finally, we tested for an association between chromo-

some length/gene content and effect size to describe

whether a chromosome contributes more to the heritabil-

ity than expected under a polygenic model (Fig. 2). As

expected, the polygenic trait had average effect sizes

across replicates that scaled with the chromosome length

(Fig. 2), and in a linear mixed effects model testing for an

association with chromosome length, the slope of the

regression was significant (P < 0.001) and equivalent to

the simulated effect size of 1.496 e�04 (95%

CI: 9.886 e�05, 2.004 e�04; Fig. 2). We found no evi-

dence for an interaction across replicates (5.773 e�06;

95% CI: �1.062 e�05, 2.558 e�05; P = 0.532), demon-

strating that this association was consistent across repli-

cates. We found no association between chromosome

length and effect size for either the trait of moderate

effect QTL (1.233 e�05; 95% CI: �7.078 e�05,

9.170 e�05; P = 0.798) or large effect QTL (�8.740 e�05;

95% CI: �3.590 e�04, 1.718 e�04; P = 0.528) across any

replicates (no association was expected for these architec-

tures), demonstrating that a significant regression of

chromosome effect size on chromosome length/gene

content provides robust evidence of whether effect sizes

are indicative of a polygenic basis of inheritance.

The genetic architecture of wing length in a wild bird
population

For wing length, when marker-derived relatedness

estimates were weighted (by 0.407) to correct for

incomplete LD with the underlying genome, all meth-

ods of estimating marker-based relatedness gave similar

heritability values to the pedigree value (Table 2). In

contrast, un-weighted estimates returned lower herita-

bility values, a poorer model fit, and an overestimation

of the permanent environment effect (Table 2).

Second, we then estimated genetic variance associated

with individual chromosomes and found that four of

the 22 estimates of the chromosomal heritability were

© 2013 John Wiley & Sons Ltd
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significantly different from zero, on chromosomes 1A,

5, 7 and 11 (Fig. 3a; Table 3: LRT1). We then estimated

variance on the Z chromosome separately from the

autosomes and tested different models of dosage com-

pensation and found that the Z chromosome effects

were not significantly different to zero, with the model

of best fit reflecting no dosage compensation for the Z

chromosome for this trait (Table 3). The sum of the

chromosome-specific heritability was 0.568 (Table 3),

which was almost identical to the estimates made from

the pedigree (Table 2).

Finally, we then tested whether the contribution of

different genomic regions to adult wing length was

associated with the expected gene content of the chro-
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Fig. 1 Data were simulated with the exact same marker structure and number of individuals as for the Wytham Woods great tit data.

Three different trait architectures were simulated: (i) a polygenic architecture where the heritability is explained by 200 quantitative

trait loci (QTL) spaced every 10 centimorgan (cM) throughout the genome; (ii) an architecture where all of the heritability is

explained 22 QTL, with one QTL per linkage group (trait with moderate effect QTL); and (iii) an architecture where all of the herita-

bility is explained by five QTL each on separate linkage groups, with the remaining linkage groups containing no QTL (trait with

large effect QTL). For each type of architecture, we analysed 10 replicate data sets. (a) For all replicates of each simulated architec-

ture, a qqplot is shown of the estimated heritability of each linkage group plotted against the simulated value, with grey lines giving

the 95% confidence intervals (95% CI) of the estimates gained from the models (note that the scale is different across the architec-

tures). (b) We examined the accuracy of the point estimates across different simulated values by estimating the root squared differ-

ence of each estimate from the simulated value (root squared error). (c) Histogram of the log-likelihood ratio test statistics for linkage

groups (n = 170) that were simulated to have no effects for trait architecture (iii), with dashed line indicating a significant test statis-

tic at P < 0.05.
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mosome (Table 3) thus further testing whether the

effects fit that expected from a polygenic model. In gen-

eral, the greater the expected gene content of a chromo-

some, the higher the heritability estimate for that

chromosome (F1,20 = 8.26, P = 0.009), and the slope of

the regression line of 2.975 9 10�5 heritability per gene

is consistent with a genome-wide heritability value of

0.383 if the heritability scales with the number of

expected genes identified from the zebra finch genome

(Fig. 3b). In contrast, a multiple regression including

the number of markers per chromosome and chromo-

some size alongside the estimated gene content found

no evidence for any effects of marker density

(F1,20 = 0.24, P = 0.618) or chromosome size
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Fig. 2 For each simulated architecture, the average heritability of each linkage group across replicates is plotted against the chromo-

some length in centimorgan (cM), with grey lines giving the 95% CI of the point estimates across replicates. Note that in the simu-

lated data, the recombination rate is the same across chromosomes, and thus, the linkage map distances are directly comparable with

physical distance and with gene content. The regression is also not dependent upon any single data point.

Table 2 Estimates of additive genetic variance for wing length in the Wytham Woods great tit population using relationship

estimates derived from a pedigree and from markers using three different methods

VPE VA VYR VS VR logLK h2

A 0.094 (0.071) 1.243 (0.103) 0.045 (0.024) 0.059 (0.025) 0.753 (0.022) �2934.26 0.567 (0.038)

G1 0.552 (0.061) 0.787 (0.083) 0.045 (0.024) 0.051 (0.023) 0.758 (0.022) �2949.44 0.359 (0.032)

G2 0.582 (0.062) 0.757 (0.083) 0.045 (0.024) 0.052 (0.023) 0.758 (0.022) �2953.82 0.345 (0.032)

G3 0.578 (0.062) 0.761 (0.082) 0.045 (0.024) 0.052 (0.023) 0.758 (0.022) �2953.75 0.347 (0.032)

GA
1 0.141 (0.067) 1.193 (0.099) 0.045 (0.024) 0.054 (0.024) 0.754 (0.022) �2920.68 0.545 (0.036)

GA
2 0.158 (0.067) 1.178 (0.099) 0.045 (0.024) 0.054 (0.024) 0.754 (0.022) �2923.98 0.538 (0.036)

GA
3 0.153 (0.067) 1.183 (0.099) 0.045 (0.024) 0.054 (0.024) 0.754 (0.022) �2923.37 0.546 (0.036)

A represents the estimates made using a relationship matrix from a pedigree. G1–G3 represent the estimates made using un-weighted

marker-derived estimates of relatedness from the three approaches outlined in Materials and Methods. GA
1 –G

A
3 represent estimates

made using weighted marker-derived estimates of relatedness from the three approaches. VPE gives the variance estimated for the

permanent environment effect; VA gives the additive genetic variance; VYR gives the yearly temporal variance in measurement;

VS gives the variance estimate for the spatial measurement effects; VR gives the residual variance; logLK is the log likelihood of the

model; and h2 gives the heritability.
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Fig. 3 (a) Heritability of wing length in a

wild bird population attributed to each

linkage group is (b) correlated with the

number of genes predicted through

homology with the zebra finch genome.

The linkage group is displayed on the

x-axis of (a) and as a data point in (b)

with micro and m both representing the

microchromosomes. Error bars give the

standard error of the estimates.
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(F1,20 = 0.26, P = 0.616). Therefore, as the slope of the

regression line estimated in Fig. 3b, returns an estimate

that is lower than directly estimated heritability, it sug-

gests that there may be additional gene effects that are

not captured by simply the number of predicted genes.

However, the hypothesis that all chromosomes contrib-

ute towards variation in proportion to their gene con-

tent, in line with an additive mode of gene action

cannot be rejected from these data as it is clear that

most chromosomes contribute modestly to the overall

additive genetic variance.

Testing for sex-specific genetic effects across the
genome

As plumage characteristics and body size are sexually

dimorphic in this population (wing length: F1,4575
= 284.58, P < 0.001; male mean: 76.225, 1.588 SD; female

mean: 73.212, 1.519), we examined whether there was

any evidence for sex-specific genetic effects across dif-

ferent regions of the genome, by testing for the effects

of sex on the estimated genetic variance associated with

individual chromosomes (model 3, Table 4).

Overall, the cross-sex genetic correlation was close to

one (rG = 0.885 � 0.217), and testing for sex-specific

effects across chromosomes revealed that across most of

the genome, there was no evidence for sex differences

in the additive genetic variance attributed to chromo-

somes (Table 4). We found evidence for sex-specific

effects at chromosome 8, which contributed 12% to the

additive genetic variance in males, but only 0.1% in

females (Table 4). As suggested by the increased

standard error of the estimated effects in Table 3, as

compared to the standard errors of Table 2, we appear

to be restricted to detecting a single region of large sex-

specific effect, because of our limited sample size for

Table 3 Estimates of additive genetic variance of wing length for each chromosome in the Wytham Woods great tit population

LG Markers Genes Length (cM) VA PVA h2 LRT1 LRT2

1 579 1254 139.88 0.068 (0.065) 0.057 (0.054) 0.031 (0.029) 0.02 2.56

1A 415 972 93.58 0.153 (0.064) 0.129 (0.053) 0.069 (0.029) 5.94 0.56

2 700 1450 139.69 0.048 (0.065) 0.041 (0.055) 0.022 (0.029) 0.02 1.04

3 596 1290 114.97 0.125 (0.069) 0.106 (0.058) 0.057 (0.032) 1.84 0.16

4 356 811 97.56 0.035 (0.048) 0.029 (0.041) 0.016 (0.022) 1.44 0.06

4A 103 39 59.38 0.019 (0.030) 0.016 (0.025) 0.009 (0.014) 0.64 0.02

5 346 998 98.57 0.113 (0.051) 0.095 (0.045) 0.051 (0.025) 4.18 0.84

6 177 596 78.02 0.058 (0.041) 0.049 (0.035) 0.026 (0.019) 3.58 1.42

7 176 562 72.64 0.107 (0.049) 0.090 (0.041) 0.049 (0.022) 8.58 3.38

8 134 575 53.83 0.038 (0.036) 0.032 (0.030) 0.017 (0.016) 0.64 0.00

9 130 497 54.20 0.010 (0.031) 0.008 (0.026) 0.005 (0.014) 0.50 0.00

10 148 444 50.47 0.055 (0.039) 0.046 (0.032) 0.025 (0.017) 1.20 0.08

11 135 397 58.23 0.116 (0.048) 0.098 (0.040) 0.053 (0.022) 9.58 5.30

12 152 369 51.92 0.000 0.000 0.000 0.00 2.26

13 117 379 40.95 0.061 (0.039) 0.051 (0.033) 0.027 (0.018) 1.82 0.40

14 126 426 49.20 0.038 (0.035) 0.032 (0.029) 0.017 (0.016) 1.60 0.20

15 173 381 49.15 0.018 (0.037) 0.016 (0.031) 0.008 (0.017) 0.06 0.44

17 96 336 45.36 0.000 0.000 0.000 0.00 0.62

18 93 334 49.91 0.048 (0.035) 0.040 (0.030) 0.022 (0.016) 0.86 0.04

19 97 348 49.43 0.023 (0.031) 0.020 (0.026) 0.011 (0.014) 0.72 0.02

20 155 356 49.44 0.022 (0.038) 0.018 (0.032) 0.009 (0.017) 0.48 0.02

Micro 308 1808 411.04 0.097 (0.057) 0.082 (0.048) 0.044 (0.026) 2.34 0.14

ZND 279 826 51.21 0.032 (0.033) 0.018 (0.018) — 0.80

ZFD 279 826 51.21 0.016 (0.018) 0.009 (0.008) — 0.62

ZEV 279 826 51.21 0.008 (0.022) 0.004 (0.005) — 0.40

LG gives the linkage group, with the number of markers, number of expected genes and length in cM. Different models of dosage

compensation for the Z chromosome were tested with ZND assuming no dosage compensation; ZFD assuming full dosage compensa-

tion; and ZEV assuming equal variance. VA gives the additive genetic variance; PVA gives the proportion of genome-wide additive

genetic variance; and h2 gives the heritability. Estimates are made from a model where the relationship matrices of each chromo-

somes are fit simultaneously within a single model, and the sum of the heritability of each chromosome is 0.568. LRT (log-likelihood

test) statistics are gained from models containing two relationship matrices: one for the chromosome and another for the rest of the

genome. LRT1 is a log-likelihood ratio test statistics for whether an effect size is significantly greater than zero, and LRT2 tests

whether the contribution of a chromosome is greater or less than expected from a polygenic model (contrast 1 and contrast 2 in

Materials and Methods). Significance at P < 0.05 is given in bold. Linkage groups with effects smaller than 1.0 9 10�4 are shown as

zero because their effects and the error are bound to zero within the model.
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each sex (Table 4). Therefore, there may be additional

genomic regions where the effect sizes differ more

subtly, but we do not have the power in this study to dif-

ferentiate this. However, it is clear that the combined-sex

estimates of chromosome 8 in Table 3 do not reflect the

effect sizes estimated for males in Table 4, and thus, by

testing for sex-specific effects, we have potentially identi-

fied a sex-specific region that would otherwise have been

deemed to have little effect in both sexes.

Discussion

In this study, we adapt, test and apply multimarker meth-

ods that enable genetic variation for complex phenotypic

traits, measured on individuals from ecological study pop-

ulations, to be partitioned across regions of the genome.

Our application of this approach demonstrates for the first

time that genetic variation for a complex quantitative trait

within a wild population reflects contributions frommulti-

ple regions of the genome, whose effects scale with their

expected gene content. We also provide one of the first

tests of the distribution of sex-limited genetic effects across

chromosomes. Our results suggest that most of the geno-

mic regions that influence wing length have the same

effects in both sexes. However, some of the genetic vari-

ance in males can be attributed to regions that have no

effects in females, which could facilitate the sexual dimor-

phism observed for this trait.

Studying individuals within their natural habitat

provides the opportunity to examine patterns of genetic

variance and covariance of, and the strength and direction

of selection acting upon, complex phenotypic traits in the

wild. However, this often requires many decades of effort

before sample sizes become large enough to support the

analyses. The multimarker approach presented here esti-

mates the actual genome-wide relatedness among indi-

viduals using genetic markers and is unbiased of the

sampling error. Importantly, this approach can be

adopted irrespective of whether a pedigree is available or

not, enabling additive genetic variance to be calculated

without a pedigree or breeding design, and within this

study, we describe how this can be done. Here, we show

Table 4 Estimates of additive genetic variance of wing length for each chromosome in males and females in the Wytham Woods

great tit population

LG

Males Females

LRT1VA PVA h2 VA PVA h2

1 0.000 0.000 0.000 0.090 (0.117) 0.073 (0.095) 0.043 (0.050) 0.74

1a 0.253 (0.124) 0.189 (0.092) 0.114 (0.055) 0.166 (0.108) 0.138 (0.088) 0.079 (0.051) 1.26

2 0.048 (0.138) 0.037 (0.105) 0.022 (0.062) 0.127 (0.105) 0.103 (0.097) 0.059 (0.059) 3.18

3 0.094 (0.122) 0.069 (0.089) 0.042 (0.054) 0.177 (0.119) 0.144 (0.096) 0.084 (0.056) 1.98

4 0.125 (0.098) 0.092 (0.072) 0.056 (0.043) 0.038 (0.078) 0.031 (0.063) 0.018 (0.036) 3.44

4a 0.000 0.000 0.000 0.059 (0.064) 0.047 (0.051) 0.028 (0.031) 0.26

5 0.050 (0.096) 0.036 (0.071) 0.022 (0.043) 0.000 0.000 0.000 2.46

6 0.093 (0.076) 0.069 (0.056) 0.041 (0.034) 0.038 (0.064) 0.031 (0.053) 0.018 (0.030) 1.60

7 0.120 (0.092) 0.089 (0.057) 0.054 (0.041) 0.186 (0.084) 0.153 (0.066) 0.089 (0.034) 0.14

8 0.164 (0.072) 0.115 (0.059) 0.076 (0.036) 0.001 (0.053) 0.001 (0.043) 0.001 (0.025) 6.20

9 0.024 (0.065) 0.018 (0.047) 0.011 (0.029) 0.003 (0.053) 0.002 (0.043) 0.001 (0.025) 1.24

10 0.010 (0.062) 0.007 (0.046) 0.004 (0.028) 0.052 (0.063) 0.042 (0.051) 0.025 (0.030) 0.30

11 0.086 (0.077) 0.071 (0.057) 0.034 (0.034) 0.080 (0.066) 0.067 (0.055) 0.038 (0.031) 0.22

12 0.000 0.000 0.000 0.080 (0.076) 0.064 (0.061) 0.038 (0.036) 0.66

13 0.000 0.000 0.000 0.069 (0.068) 0.056 (0.055) 0.033 (0.033) 0.04

14 0.000 0.000 0.000 0.053 (0.064) 0.043 (0.052) 0.025 (0.030) 0.26

15 0.088 (0.088) 0.064 (0.063) 0.039 (0.039) 0.000 0.000 0.000 3.40

17 0.000 0.000 0.000 0.002 (0.051) 0.001 (0.042) 0.001 (0.025) 0.32

18 0.000 0.000 0.000 0.042 (0.057) 0.034 (0.046) 0.020 (0.027) 0.10

19 0.000 0.000 0.000 0.060 (0.062) 0.049 (0.049) 0.029 (0.029) 0.36

20 0.151 (0.094) 0.109 (0.067) 0.067 (0.041) 0.000 0.000 0.000 3.54

Micro 0.036 (0.108) 0.026 (0.077) 0.016 (0.048) 0.000 0.000 0.000 2.24

ZND 0.000 0.000 0.000 0.027 (0.042) 0.022 (0.034) 0.013 (0.020) 0.40

LG gives the linkage group. VA gives the additive genetic variance; PVA gives the proportion of genome-wide additive genetic vari-

ance; and h2 gives the heritability. ZND is a model assuming no dosage compensation for the Z chromosome. LRT1 is a log-likelihood

ratio test statistics for whether the genetic variance of a chromosome differs between the sexes as compared to a model that estimates

a single effect for both sexes at that chromosome. Bold indicates a significant difference in variance across the sexes at P < 0.05. In all

models, we allowed for sex-specific variance across the rest of the genome before testing sex-limited effects as a specific chromo-

some.
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that marker-based relatedness estimates are capable of

returning accurate additive genetic variance estimates,

provided that they are weighted by a proxy measure of

LD among markers and the genome. The way in which

the weighting is conducted depends upon the relatedness

structure of the data and whether a pedigree is available,

and we outline different approaches that can be taken

within the methods and show that the weighting factor

reduces the estimation error of the pairwise relatedness

estimates (see Box 1). We also demonstrate that this

approach is capable of revealing novel insights into the

underlying genetic architecture of phenotype in ecological

study populations, as general patterns of genetic architec-

ture can be tested for, and genetic variance can be accu-

rately estimated and partitioned across the genome, even

under relatively modest marker density and sample size

compared with crop, livestock and human medical

genetic studies.

Given the significance of the regression of chromo-

some effect size and expected gene content, we cannot

reject the hypothesis for a genetic architecture with a

polygenic additive mode of gene action for wing length

within this population. There is the potential for moder-

ate effects to exist, given the fact that the slope of the

chromosome estimates on their expected gene content

returns a heritability lower than the directly estimated

value, that chromosome 11 may contribute more than

expected under a polygenic model and that some chro-

mosomes have not been mapped. However, we do not

find a pattern of moderate or large QTL effects that we

see in the simulated data, and thus, we simply conclude

that the majority of the heritability of wing length

within this natural population is likely to come from

many genes spread throughout the genome.

It has recently been argued that rare alleles of large

effect may explain much of the genetic variance for

traits under selection (Orr 2005; Eyre-Walker 2010),

which is supported by linkage mapping QTL studies

conducted to date in wild pedigreed populations (e.g.

the wing length studies of Tarka et al. 2010; Schielzeth

et al. 2012a,b). Our results are in contrast to these stud-

ies, as we find most of the heritability of consistent with

a polygenic basis, where all chromosomes contribute

towards variation in proportion to their gene content.

Our findings are consistent with recent studies of quan-

titative traits in both human medical genetic and live-

stock populations, which despite the power to detect

rare variants, typically find little evidence for QTL of

large effect (Mackay 2001; Hill et al. 2008; Allen et al.

2010; Yang et al. 2010). While it is possible that different

architectures exist across different populations, differ-

ences between our findings and previous studies may

simply reflect the limited sample size and power of

evolutionary biology studies to conduct QTL mapping,

which result in inflated estimates of effect sizes (Slate

2013). Therefore, it will now be important to repeat

these studies with the approach we present here.

Consistent directional and stabilizing selection acting

upon quantitative traits is common in wild populations,

and thus, examining the underlying genetic architecture

of a range of sexually selected, morphological and life

history traits, for many different species and habitats, is

likely to contribute significantly towards our understand-

ing of the architecture of traits under selection. The next

step in this study would be to fine map the trait in ques-

tion by partitioning variance across regions of the gen-

ome smaller than a chromosome (i.e. 50SNP blocks),

which will yield a greater understanding of whether the

chromosome effect stems from an isolated region or

whether they are distributed across the chromosome.

One way in which we can better understand the

architecture of traits under selection is to examine

whether the effects of genomic regions depend upon

the context in which they are expressed. Our findings

reveal that through partitioning genetic variance across

chromosomes and testing for sex-specific effects, regions

of the genome can be detected, which may contain cau-

sal variants whose effects are context specific. Estimat-

ing genetic covariance using relatedness estimated

either from a pedigree or from a genome-wide marker

sharing revealed a highly positive cross-sex genetic cor-

relation, and this is supported by no evidence for sex

differences in the additive genetic variance attributable

to the majority of chromosomes. Many studies have

interpreted highly positive cross-sex correlations in the

between-family genetic variance as a constraint to an

independent evolutionary trajectory for each sex (Lande

1980; Poissant et al. 2009). Our results suggest that cer-

tain genomic regions may have effects that act indepen-

dently in each sex, despite positively correlated genetic

effects across the rest of the genome. Theoretically, dif-

ferential selection acting upon these regions in males

and females could facilitate sexual dimorphism for this

trait. Therefore, these findings, if replicated across other

wild populations, will have implications for our under-

standing of sexual selection, population dynamics and

speciation (Lande 1980; Butler et al. 2007; Poissant et al.

2009), because they suggest that failing to model sex-

specific architecture could hamper our ability to detect

regions underlying complex traits.

In summary, this is the first time that genetic variance

for a complex trait in a naturally occurring population

has been partitioned across the genome and localized

sex-specific effects assessed. It remains to be seen both

in this and across other populations, whether similar

effects can be found or whether QTL of large effects are

segregating as expected under theories of adaptation

(Otto & Jones 2000; Slate et al. 2010). Our application

© 2013 John Wiley & Sons Ltd
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was to a single trait; however, the method is entirely

general and could be applied to any quantitative trait to

examine sex-, age- and environment-specific effects, as

well as to multiple traits to partition genetic covariance

across the genome in any ecological study population.
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