Exercices de biostatistique

Rappel: pour visualiser la formule associée aux résultats obtenus, il vous suffit d'aller cliquer sur la case concernée(uniquement dans excel et non avec "Adobe Acrobat")!!

Analyse de variance à deux critères avec interaction ou hiérarchie (ANOVA 2i et 2h)

Exercice 1

Dans le but d'étudier l'action sur la cholestérolémie de deux substances anabolisantes, A et B, trois doses du facteur A et quatre doses du facteur B ont été expérimentées, dans toutes les combinaisons possibles, avec trois répétitions.

			Α	
	_	Dose 1	Dose 2	Dose 3
В		651	671	679
	Dose 1	658	668	680
		662	675	681
		657	669	683
	Dose 2	658	670	682
		663	674	678
		654	670	685
	Dose 3	669	676	681
		665	673	678
		649	675	676
	Dose 4	652	676	679
		659	669	683

L'effet de doses croissantes de A est-il indépendant de la dose utilisée pour B et inversément?

H0: 1) Pas d'effet de la substance A.

- 2) Pas d'effet de la substance B.
- 3) Pas d'interaction.

, , ,				Somme	Moyenne
	651	671	679		,
	658	668	680	•	
	662	675	681		
Somme rép.	1971	2014	2040	6025	669,444444
Moy. Rép.	657	671,333333	680		
	657	669	683		
	658	670	682		
	663	674	678		
Somme rép.	1978	2013	2043	6034	670,444444
Moy. Rép.	659,333333	671	681		
	654	670	685		
	669	676	681		
	665	673	678		
Somme rép.	1988	2019	2044	6051	672,333333
Moy. Rép.	662,666667	673	681,333333		
	649	675	676		
	652	676	679		
	659	669	683		
Somme rép.	1960	2020	2038	6018	668,666667
Moy. Rép.	653,333333	673,333333	679,333333		
Somme	7897	8066	8165	24128	670,222222

Moyenne 658,083333 672,166667 680,416667

Comme vous pourrez le constater la résolution de ce type d'exercice est sensiblement la même que pour toutes les anovas, si ce n'est que l'effet de l' interaction possible entre les doses est à prendre en considération en plus des effets individuels de ces deux doses et de l'erreur dans la contribution totale!

Somme des carrés totaux.

369,493827	0,60493827	77,0493827
149,382716	4,9382716	95,6049383
67,6049383	22,8271605	116,160494
174,82716	1,49382716	163,271605
149,382716	0,04938272	138,716049
52,1604938	14,2716049	60,4938272
263,160494	0,04938272	218,382716
1,49382716	33,382716	116,160494
27,2716049	7,71604938	60,4938272
450,382716	22,8271605	33,382716
332,049383	33,382716	77,0493827
125,938272	1,49382716	163,271605

Somme des carrés "effet dose A".

3626,22222

SCT=

147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698
147,352623	3,7808642	103,926698

Somme des carrés "effet dose B".

0,60493827 5,44444444 0,04938272 0,44444444 4,45679012 40,1111111 2,41975309 21,7777778 SC"effet B"= 67,7777778

SC"effet A"= 3060,72222

Somme des carrés "interaction".

Chaque moyenne de case (par exemple Dose I * Mâle) est représentée n fois. Il faut donc calculer la somme des écarts des moyennes de case plus la moyenne générale, et moins les moyennes de ligne et de colonne correspondantes. Il faudra ensuite multiplier le résultat par n. On a donc:

0,28009259	0,00925926	0,3912037
3,16898148	5,78703704	0,3912037
18,3356481	4,89814815	4,28009259
30,6134259	22,2314815	0,66898148

SCI= 91,0555556

Somme des carrés erreur.

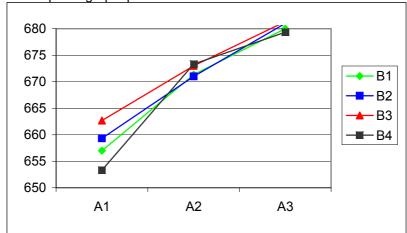

SCE= 406,666667

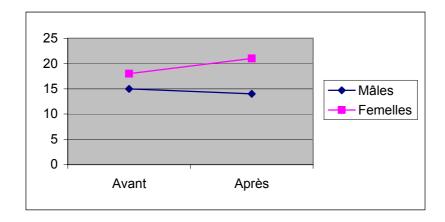
Table d'analyse de variance.

Source	SC	Ddl	•	Variance	F	P(>F)
Dose A	3060,7222	2	2	1530,36111	90,3163934	6,7738E-12
Dose B	67,777777	8	3	22,5925926	1,33333333	0,28687883
Interaction	91,055555	6	6	15,1759259	0,89562842	0,51391057
Erreur	406,66666	7	24	16,9444444		
Total	3626,2222	2	35			

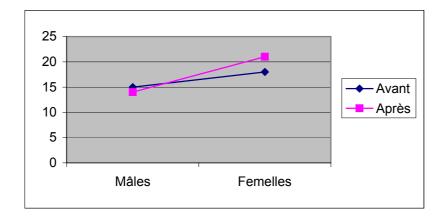
Il y a donc bien un effet de la dose A, mais par contre, pas d'effet de la dose B, ni d'interaction entre les 2 doses!

Ceci se vérifie aisément par le graphique suivant:

Les segments dont on a l'impression qu'ils se croisent(ce qui évoquerait une interaction) sont en fait quasi parallèles, ce qui exclut toutes interactions; cet artéfact est dû à l'échelle de l'axe des ordonnées.

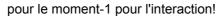

Exercice 2

Représentez l'interaction potentielle entre un traitement et le sexe des individus auquel le traitement est administré. Comment mesure-t-on la variance erreur et la variance due à

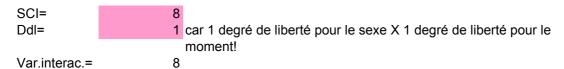

l'interaction? Testez la signification de l'interaction. Les données sont les suivantes:

	Avant traitement	Après traitement
Mâles	12	10
	18	18
Femelles	20	22
	16	20

	Avant		Après		Moy.sexe	
Mâles		12		10	1	4,5
		18		18		
Moyenne rép		15		14		
Femelles		20		22	1	9,5
		16		20		
Moyenne rép		18		21		
Moy.moment		16,5		17,5		17
	Avant		Après			
Mâles		15	·	14		
Femelles		18		21		

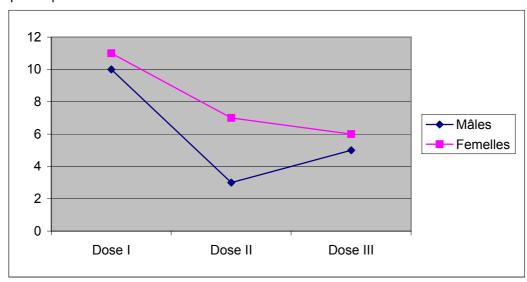


Mâles Femelles
Avant 15 18
Après 14 21

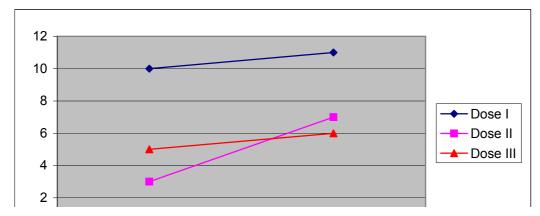

Variance erreur.

SCE= 60
Ddl= 4 car 7 (n-1) degrés de liberté totaux-1 degré de liberté pour le sexe-1

Variance interaction.



Exercice 3


Le tableau peut être représenté de la manière suivante

	Dose I	Dose II	Dose III	Moyennes
Mâles	9,11	2,4	4,6	6
Moyennes	10	3	5	
Femelles	10,12	6,8	9,3	8
Moyennes	11	7	6	
Moyennes	10,5	5	5,5	7

On peut représenter l'effet de la dose dans les deux sexes:

On peut également représenter l'effet du sexe dans la dose:

On peut voir sur ces graphiques qu'il y a une interaction entre les effets: par exemple l'effet du sexe sur la dose III est différent de l'effet du sexe sur la dose II. On pourra tester si cette différence est significative par une Anova II avec interaction.

A) Effet du sexe

	Dose I	Dose II	Dose III	Moyennes
Mâles	9,11	2,4	4,6	6
Moyennes	10	3	5	
Femelles	10,12	6,8	9,3	8
Moyennes	11	7	6	
Moyennes	10,5	5	5,5	7

L'écart entre la moyenne 'mâle' et la moyenne générale au carré est 1 (idem pour la moyenne femelle'). On a donc 12 contributions de 1 pour l'effet sexe, soit:

B) Effet de la dose

Chaque observation portant sur la dose I a une contribution de $(10.5-7)^2$, et il y a 4 contributions. Chaque observation portant sur la dose II a une contribution de $(5-7)^2$, et il y a 4 contributions. Chaque observation portant sur la dose III a une contribution de $(5.5-7)^2$, et il y a 4 contributions.

On a donc: SCDose = $4*[3,5^2 + 2^2 + 1.5^2]$, soit

C) Effet de l'interaction

Chaque moyenne de case (par exemple Dose I * Mâle) est représentée 2 fois. Il faut donc calculer la somme des écarts des moyennes de case plus la moyenne générale, et soustraire les moyennes de ligne et de colonne correspondantes. Il faudra ensuite multiplier le résultat par 2. On a donc:

SCInter =
$$2*[0.5^2 + 1^2 + 0.5^2 + 0.5^2 + 1^2 + 0.5^2]$$
, soit

D) Somme des carrés totaux

Chaque écart entre les observations et la moyenne générale est élevé au carré, et ces contributions sont sommées.

SCTotaux =
$$2^2 + 4^2 + 5^2 + 3^2 + 3^2 + 1^2 + 3^2 + 5^2 + 1^2 + 1^2 + 2^2 + 4^2$$

E) Somme des carrés erreur

Les erreurs dans une Anova II avec interaction sont les écarts entre les observations et la moyenne de la case.

La somme des carrés erreur s'obtient alors en élevant ces écarts au carré et en les sommant:

SCE =
$$1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2$$

SCErreur 28

L'information est synthétisée dans la table:

Source	SC	DDL	Carrés moy.	F	P(>F)
Facteur A	74	2	37	7,92857143	0,02068586
Sexe	12	1	12	2,57142857	0,15993053
Interaction	6	2	3	0,64285714	0,55851822
Erreur	28	6	4,66666667		
Total	120	11	10,9090909		

Vérifications:

SCT = SCFA + SCSexe + SCInt + SCE DdIT = DdIFA + DdISexe + DdIInt + DdIE

Les conclusions sont triples:

- a) Il y a un effet du facteur A globalement (au seuil 5%). Il resterait à tester quels niveaux sont réellement différents dans le facteur A (probablement, la dose I est différente des deux autres).
- b) Il n'y a pas d'effet du sexe sur les observations.
- c) Il n'y a pas d'interaction significative. Il n'y a donc pas lieu de penser que l'effet de la dose est significativement différent d'un sexe à l'autre, ou que l'effet du sexe est significativement d'une dose à l'autre. Les fluctuations observées sur les graphiques sont donc considérées comme aléatoires, et non significatives.

Exercice 4

Le tableau peut cette fois être représenté de la manière suivante

	Dose I	Dose II	Dose III	Moyennes
Mâles	9,11,10	2,4,6	4,6,6,10	6,8
Moyennes	10	4	6,5	
Femelles	10,12	6,8,5,5	9,3,4,4	6,6
Moyennes	11	6	5	
Moyennes	10,4	5,14285714	5,75	6,7

Calculons les différentes sommes de carrés avec ces nouvelles données

A) Effet du sexe

	Dose I	Dose II	Dose III	Moyennes
Mâles	9,11,10	2,4,6	4,6,6,10	6,8
Moyennes	10	4	6,5	
Femelles	10,12	6,8,5,5	9,3,4,4	6,6
Moyennes	11	6	5	
Moyennes	10,4	5,14285714	5,75	6,7

L'écart entre la moyenne 'mâle' et la moyenne générale au carré est 0,1² (idem pour la moyenne femelle'). On a donc 20 contributions de 0,01 pour l'effet sexe, soit:

SCSexe 0,2

B) Effet de la dose

Chaque observation portant sur la dose I a une contribution de $(10.4-6,7)^2$, (5 contributions). Chaque observation portant sur la dose II a une contribution de $(5,14-6,7)^2$, (7 contributions). Chaque observation portant sur la dose III a une contribution de $(5.75-6,7)^2$, (8 contributions).

On a donc: SCDose = $5*3,7^2 + 7*1,55...^2 + 8*0,95^2$, soit

SCDose 92,6428571

C) Effet de l'interaction

Chaque moyenne de case (par exemple Dose I * Mâle) est représentée n fois. Il faut donc calculer la somme des écarts des moyennes de case plus la moyenne générale, et moins les moyennes de ligne et de colonne correspondantes. Il faudra ensuite multiplier le résultat par n. On a donc:

SCInter = $3*(10+6,7-6.8-10.4)^2 + 3*(4+6,7-6.8-5.14285..)^2 + ...,$ soit

SCInter 13,4085714

D) Somme des carrés totaux

Chaque écart entre les observations et la moyenne générale est élevé au carré, et ces contributions sont sommées.

SCTotaux = $(9-6,7)^2 + (11-6,7)^2 + ...$

SCTotaux 164,2

E) Somme des carrés erreur

Les erreurs dans une Anova II avec interaction sont les écarts entre les observations et la moyenne de la case.

La somme des carrés erreur s'obtient alors en élevant ces écarts au carré et en les sommant:

SCE = $1^2 + 1^2 + 0^2 + 2^2 + 0^2 + 2^2 + \dots$

SCErreur 59

L'information est synthétisée dans la table:

Source	SC	DDL	Carrés moy.	F	P(>F)
Facteur A	92,6428571	2	46,3214286	10,9915254	0,00134962
Sexe	0,2	1	0,2	0,04745763	0,83069099
Interaction	13,4085714	2	6,70428571	1,59084746	0,23847026
Erreur	59	14	4,21428571		
Total	164,2	19	8,64210526		

Vérifications: 165,251429

SCT = SCFA + SCSexe + SCInt + SCE DdIT = DdIFA + DdISexe + DdIInt + DdIE Comme on le voit, la somme des carrés totaux (164.2) n'est pas égale à la somme des carrés des contributions du facteur A, du sexe, de l'interaction et de l'erreur.

Cette situation est typique des problèmes où les données sont non balancées (nombres différents de données dans les cases), et l'approche simple suivie dans les autres problèmes ne s'appliquent pas ici.

Exercice 5

Les performances laitières de 3 filles de deux taureaux ont été enregistrées:

Taureau I	Fille I	5800	6200	6800
	Fille II	5400	7100	
	Fille III	5900	6800	
Taureau II	Fille I	5200		
	Fille II	5000	6000	6800
	Fille III	6500	5800	

Quelles comparaisons pouvez-vous faire ? Réalisez les tests nécessaires.

Les filles ne provenant que d'un seul père (!), l'effet "Fille" est "niché" dans l'effet "Taureau", et on a un exemple de modèle hiérarchique:

$$Yijk = Y... + (Yi.. - Y...) + (Yij. - Yi..) + (Yijk - Yij.)$$

Reprenons le tableau:

Taureau I	Fille I	5800	6200	6800
	Fille II	5400	7100	
	Fille III	5900	6800	
Taureau II	Fille I	5200		
	Fille II	5000	6000	6800
	Fille III	6500	5800	

On peut procéder en calculant les différentes moyennes:

<u>Moyennes</u>	Générale	6100
	Taureau I	6285,71429
	Taureau II	5883,33333
	Fille I (T I)	6266,66667
	Fille II (T I)	6250
	Fille III (T I)	6350
	Fille I (T II)	5200
	Fille II (T II)	5933,33333
	Fille III (T II)	6150

Avec ce modèle, on peut calculer les contributions aux différentes sommes de carrés:

A) Somme des carrés totaux.

Taureau I	Fille I	90000	10000	490000
	Fille II	490000		
	Fille III	40000		
Tarrager				
Taureau II	Fille I	810000		
	Fille II	1210000	10000	490000

Fille III	160000	90000	
.,		=000000	
soit,	SCT=	5380000	

B) Somme des carrés "Taureaux".

Taureau I	Fille I	34489,7959	34489,7959	34489,7959
	Fille II	34489,7959	34489,7959	
	Fille III	34489,7959	34489,7959	
Taureau II	Fille I	46944,4444		
	Fille II	46944,4444	46944,4444	46944,4444
	Fille III	46944,4444	46944,4444	

soit, SCTaureaux = 523095,238

C) Somme des carrés 'Filles' dans les "Taureaux".

Taureau I	Fille I	362,811791	362,811791	362,811791
	Fille II	1275,5102	1275,5102	
	Fille III	4132,65306	4132,65306	
Taureau II	Fille I	466944,444		
	Fille II	2500	2500	2500
	Fille III	71111,1111	71111,1111	

soit, SCF.ds Ta. = 628571,429

D) Somme des carrés "Erreurs".

Taureau I	Fille I	217777,778	4444,44444	284444,444
	Fille II	722500	722500	
	Fille III	202500	202500	
Taureau II	Fille I	0		
	Fille II	871111,111	4444,44444	751111,111
	Fille III	122500	122500	

soit, SCErreur = 4228333,33

On peut encore une fois vérifier que SCT = SCTaureaux + SCFilles (Taureaux) + SCE

La table d'analyse de la variance suivante permet de tester les 2 effets:

Source	SC	DDL	Carrés Moy.	F	P(>F)
Taureau	523095,238	1	523095,238	0,86598345	0,38304126
Fille(T)	628571,429	4	157142,857	0,26014978	0,89451653
Erreur	4228333,33	7	604047,619		
Total	5380000	12	448333,333		

Dans cette analyse, l'effet taureau n'est pas significatif, tout comme la variation entre les filles.

Exercice 6

Dans les élevages suivants, les performances suivantes ont été collectées:

Elevage 1	Chien 1	Perform.:	400	420

	Chien 2	Perform.:	500	480
Elevage 2	Chien 3	Perform.:	460	490
	Chien 4	Perform.:	450	450

Y a-t-il des différences significatives entre chiens? Estimez la différence entre estimateurs des effets chiens 1 et 2, ainsi que celle pour les chiens 1 et 4.

A) Moyennes.

chien 1:	410	Elevage 1:	450 Générale:	456,25
chien 2:	490			
chien 3:	475	Elevage 2:	462,5	
chien 4:	450			

B) Somme des carrés totaux.

lci, pour un peu varier, je n'utiliserai pas la méthode des "écarts au carré" pour trouver les valeurs de somme des carrés!

SCT= 8187,5

C) Somme des carrés "élevages".

SCél.= 312,5

D) Somme des carrés "chiens".

SCch.= 7025

E) Somme des carrés erreur.

SCE= 850

F) Table d'analyse de la variance.

Source	SC	Ddl	Variances	F	P(>F)
Elevages	312,5	1	312,5	1,47058824	0,2266025
Chiens	7025	2	3512,5	16,5294118	2,1328E-07
Erreur	850	4	212,5		
Total	8187,5	7	1169,64286		

Il y a donc un effet chien mais au sein de l'élevage où il se trouve. En effet, il est impossible de comparer des chiens appartenant à des élevages différents car, par exemple, on ne sait pas quel serait l'effet du chien 2 dans l'élevage 2, ni celui du chien 3 au sein de l'élevage 1,...

Exercice 7

Les performances de chevaux de concours ont été enregistrées et sont présentées dans le tableau qui suit:

			(Observations		
Haras	Jockey	Résultats	Total	Effectif	Moy	enne/
1	1	7		7	1	7
	2	11;14;8		33	3	11

		Total	40	4	10
2	3	9;12 8;3;9;4	21	2	10,5
	4	8;3;9; 4	24	4	6
	5	9;2	11	2	5,5
		Total	56	8	7
		Total général	96	12	8

Faites les comparaisons possibles dans ce type d'analyse.

Somme des carrés totaux.

SCT =
$$(7-8)^2+(11-8)^2+(14-8)^2+(8-8)^2+(9-8)^2+(12-8)^2+(8-8)^2+(3-8)^2+(9-8)^2+(12-8)^2+($$

Somme des carrés dus aux haras.

SCH =
$$4*(10-8)^2+8*(7-8)^2 = 24$$

Somme des carrés dus aux jockeys dans les haras.

SCJ. ds H. =
$$1*(7-10)^2+3*(11-10)^2+2*(10,5-7)^2+4*(6-7)^2+2*(5,5-7)^2 =$$
 45

Somme des carrés erreur.

SCE =
$$(7-7)^2+(11-11)^2+(14-11)^2+(8-11)^2+(9-10,5)^2+(12-10,5)^2+(8-6)^2+(3-6)^2+(9-6)^2+(9-5,5)^2+(2-5,5)^2 = 73$$

Table d'analyse de variance.

Source	SC	Ddl	Variances	F	P(>F)
Haras	24	1	24	2,30136986	0,16021691
Jockeys d H	45	3	15	1,43835616	0,28925807
Erreur	73	7	10,4285714		
Total	142	11	12,9090909		

Ces valeurs de probabilité signifient que les différences entre les haras ne sont pas significatives et les différences entre les jockeys dans les haras également.

Exercice 8

Dans cette analyse, 3 caractères sont testés simultanément: la race, la parité et la région. Il ne s'agit néanmoins pas d'une analyse croisée (par exemple, la case Région 1, Agnelage 1 et Race 2 ne figure pas dans la table). En effet, pour une analyse croisée de 3 effets avec 3 niveaux par effet, l'analyse nécessiterait 3*3*3=27 cases, ce qui n'est pas la situation rencontrée dans le problème. Cependant, les données ont été arrangées pour que chaque "croisement" 2 à 2 existe dans la table: les 3 régions sont vues dans les 3 races, les 3 parités sont vues dans les 3 régions et les 3 parités sont vues dans les 3 races. Un tel *design* est appelé "carré latin". C'est un design balancé, qui s'étudie de la manière suivante:

$$(Yijk - Y...) = (Yi... - Y...) + (Y.j. - Y...) + (Y.k - Y...) + (Yijk - Yi... - Y.j. - Y.k + 2Y...)$$

Reprenant le tableau, on peut calculer les moyennes:

Numéro d'agnelage

		1		2	;	3
Race	Région	Poids	Région	Poids	Région	Poids
1	1	30	3	20	2	25
2	2	18	1	22	3	17
3	3	24	2	28	1	27

Moyennes:

Générale	23,4444444
Race 1	25
Race 2	19
Race 3	26,3333333
Agnelage 1	24
Agnelage 2	23,3333333
Agnelage 3	23
Région 1	26,3333333
Région 2	23,6666667
Région 3	20,3333333

Les contributions aux sommes de carrés se calculent aisément:

A) Somme des carrés totaux

	Numéro d'agnelage					
	1		2		3	
Race	Région	Poids	Région	Poids	Région	Poids
1	1	42,9753086	3	11,8641975	2	2,41975309
2	2	29,6419753	1	2,08641975	3	41,5308642
3	3	0,30864198	2	20,7530864	1	12,6419753

soit, SCT = 164,222222

B) Somme des carrés 'Race'

	Numéro d'agnelage					
	1		2		3	
Race	Région	Poids	Région	Poids	Région	Poids
1	1	2,41975309	3	2,41975309	2	2,41975309
2	2	19,7530864	1	19,7530864	3	19,7530864
3	3	8,34567901	2	8,34567901	1	8,34567901

soit, SCRace = 91,5555556

C) Somme des carrés 'Parité'

	Numéro d'agnelage					
	1		2		3	
Race	Région	Poids	Région	Poids	Région	Poids
1	1	0,30864198	3	0,01234568	2	0,19753086
2	2	0,30864198	1	0,01234568	3	0,19753086
3	3	0,30864198	2	0,01234568	1	0,19753086

soit, SCParite = 1,55555556

D) Somme des carrés 'Région'

Numéro d'agnelage

	1		2		3	
Race	Région	Poids	Région	Poids	Région	Poids
1	1	8,34567901	3	9,67901235	2	0,04938272
2	2	0,04938272	1	8,34567901	3	9,67901235
3	3	9,67901235	2	0,04938272	1	8,34567901

soit, SCRégion = 54,2222222

E) Somme des carrés 'Erreur'

	Numéro d'agnelage					
	1 2			3		
Race	Région	Poids	Région	Poids	Région	Poids
1	1	2,41975309	3	3,16049383	2	0,04938272
2	2	3,16049383	1	0,04938272	3	2,41975309
3	3	0,04938272	2	2,41975309	1	3,16049383

soit, SCRégion = 16,8888889

On vérifiera que : SCT = SCRace + SCParite + SCRegion +SCE

La table d'analyse de la variance suivante permet de tester les 3 effets:

Source	SC	DDL	Carrés Moy.	F	P(>F)
Race	91,5555556	2	45,7777778	5,42105263	0,1557377
Parite	1,5555556	2	0,77777778	0,09210526	0,91566265
Région	54,2222222	2	27,1111111	3,21052632	0,2375
Erreur	16,8888889	2	8,4444444		
Total	164,222222	8	20,5277778		

La conclusion de l'analyse est qu'aucun des trois effets n'est significatif au seuil 5%

Exercice 9

Carré latin Cf exercice précédent

Régimes

	•				
Veau	R1	R2	R3		
V1	100	96	102	99,3333333	106,666667
V2	90	112	94	98,6666667	97,3333333
V3	100	100	108	102,666667	96,6666667
	96,6666667	102,666667	101.3333333	100.222222	

$$Y = Yb + (Ybv - Yb) + (Ybr - Yb) + (Ybe - Yb) + (Y - Ybv - Ybr - Ybe + 2Yb)$$

 $SCR = S(Ybr - Yb)^2 =$

12.6419753	5.97530864	1.2345679	59,555556

SCEnv = S(Ybe - Yb)² = 41,5308642 8,34567901 12,6419753

187,555556

SCE 4,9382716 4,9382716 19,7530864 88,8888889

4,9382716 19,7530864 4,9382716 19,7530864 4,9382716 4,9382716

Vérification: SCT = SCV + SCR + SCEnv + SCE = 363,555556

Analyse de variance		F		р	
SCV	27,555556	2	13,7777778	0,31	0,76335878
SCR	59,555556	2	29,7777778	0,67	0,5988024
SCEnv	187,555556	2	93,7777778	2,11	0,32154341
SCE	88,888889	2	44,444444		
SCT	363,555556	8	45,444444		